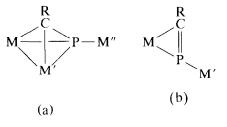
JOM 23455

η^{1}, η^{2} -Hetero-bimetallic phospha-alkyne complexes. Synthesis and NMR spectra of [Pt(dppe)(^tBuCP)M(CO)₅] (M = Cr, Mo, W)

Duncan Carmichael¹, Saud I. Al-Resayes² and John F. Nixon

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (UK) (Received November 2, 1992)


Abstract

Hetero-bimetallic complexes of the type [Pt(dppe) (¹BuCP)M(CO)₅] (M = Cr, Mo, W), containing an η^1, η^2 -ligated phospha-alkyne, are reported.

1. Introduction

There is considerable interest in the coordination chemistry of phosphorus compounds having low coordination numbers [1–3]. Coordination complexes of the phospha-alkyne ligand RC=P ($R = {}^{t}Bu$) (type (a)), involving both η^2 - and η^1 -ligating behaviour, have been made previously by certain tri- and poly-metallic systems, e.g., $[Co_2(CO)_6({}^tBuCP)W(CO)_5]$ [4], $[Mo_2(\eta^5 C_5H_5_2(CO)_4(^{t}BuCP)W(CO)_5$] [5], $[Mo_2(\eta^5-C_5H_5)_2$ $(CO)_4(^{t}BuCP)Os_3(CO)_{11}$ [6], $[CoNi(\eta^5-C_5H_5)(CO)_3$ (¹BuCP)W(CO)₅] [7], [CoNi(η^{5} -C₅H₅) (CO)₃ (¹BuCP) $Mn(\eta^{5}-C_{5}H_{5})$ (CO)₂] [7], trans-[PtCl₂(PR₃)Mo₂(η^{5} - $C_5H_5_2(CO)_4(^tBuCP)$] (PR₃ = Bu₃, PEt₃, PPh₂Mc, PPr₃) [8], trans-[PdCl₂(PBu₃)Mo₂(η^{5} -C₅H₅)₂(CO)₄ ('BuCP)] [8] and trans-[RhCl{(PF₂NMe)₂CO}Mo₂(η^{5} - $C_5H_5_2(CO)_4$ (¹BuCP)] [8]. A second type of η^1, η^2 phospha-alkyne complexation to two different metals exemplified by type (b) has not previously been described, although oligomers of the type [M(η^{5} - $(C_5H_5)_2(^{1}BuCP)]_n$ (M = Ti, n = 2; M = Zr, n = 3) and $[Pd_2Pt_3(^tBuCP)_3(PPh_3)_5]$ involving this bonding mode to the same metal are known [9,10]. We now report the

synthesis and detailed NMR spectroscopic study of bimetallic phospha-alkyne complexes containing zerovalent platinum(0) and Group VIA transition metals having structure (b).

2. Results and discussion

Treatment of $[Pt(dppe)({}^{t}BuCP)]$ [11] (1) with an excess of freshly prepared $[Cr(CO)_5THF]$ in tetrahydrofuran (THF) solution at room temperature readily gave a high yield of the yellow microcrystalline complex $[Pt(dppe)({}^{t}BuCP)Cr(CO)_5]$ (2), whose formulation was confirmed by elemental analysis, and its structure established as type (b) by IR and ³¹P NMR spectroscopy (*vide infra*). The IR spectrum of 2 in CH₂Cl₂ solution shows four $\nu(CO)$ bands, at 2056, 1978, 1940, and 1929 cm⁻¹, typical for the presence of the $[Cr(CO)_5]$ fragment [12] and similar to those observed previously for related diphosphene complexes [13,14] and established for $[Pd(dppe){(PhP=PPh)[W(CO)_5]_2}]$, whose structure

Correspondence to: Professor J.F. Nixon.

¹ Present address: DCPH, Ecole Polytechnique, F-91128, Palaiseau, France.

² Present address: Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.

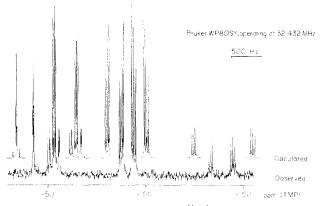
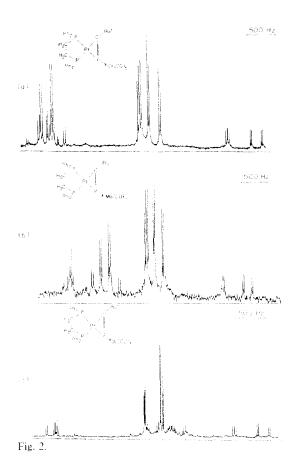



Fig. 1. Observed and calculated ${}^{-31}P{}^{1}H$ NMR spectra for $[Pt(dppe)(\eta^{2}-{}^{1}BuC\equiv P)]$ (1).

has been determined by a single crystal X-ray diffraction study [13].

Complex 2 was also formed when [Pt(dppe) (¹BuCP)] was treated with an excess of [Cr(CO)₄NBD] (NBD = norbornadiene) in tetrahydrofuran. Analogous reactions, carried out with [Pt(dppe) (¹BuCP)] and [Mo (CO)₅THF] or [W(CO)₅THF] in tetrahydrofuran at room temperature, gave dark red crystals of the complexes [Pt(dppe)(¹BuCP)Mo(CO)₅] (3) and [Pt-(dppe)(¹BuCP)W(CO)₅] (4), respectively, in high yield. The formulation of 3 and 4 is supported by elemental analysis and their structures are judged to be similar to 2 on the basis of IR and ³¹P NMR spectroscopic data. The IR spectrum of 3 shows the expected four ν (CO) bands in CH₂Cl₂ at 2088, 1977, 1945, and 1925 cm⁻¹, while 4 exhibits bands at 2046, 1981, 1953, and 1925 cm⁻¹.

2.1. ³¹P NMR spectra

The ³¹P NMR spectrum of [Pt(dppe) (¹BuCP)] (1) is shown in Fig. 1, and those of [Pt(dppe)(¹BuCP)M(CO)₅] (M = Cr (2), Mo (3), W(4)) in Fig. 2(a)–(c). A full analysis of the ³¹P{¹H} NMR spectrum of [Pt(dppe) (¹BuCP)] affords the following chemical shift and cou-

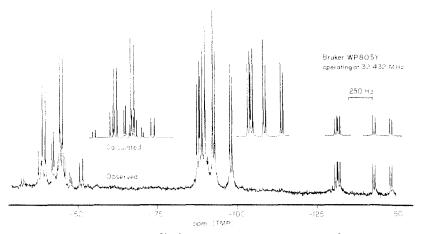
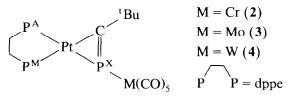



Fig. 3. Observed and calculated ${}^{31}P{}^{1}H$ NMR spectra for $[Pt(dppe)(\eta^{2}, {}^{1}BuC\equiv P \rightarrow Cr(CO)_{5}]$ (2).

pling constant data *: $\delta_{P(A)}$ 43.5; $\delta_{P(M)}$ 47.4; $\delta_{P(X)}$ 87.9 ppm. ${}^{1}J_{PtP(A)}$ + 2946; ${}^{1}J_{PtP(M)}$ + 3294; ${}^{1}J_{PtP(X)}$ - 169; ${}^{2}J_{P(A)P(M)}$ 46.2; ${}^{2}J_{P(M)P(X)}$ \pm 21.0; ${}^{2}J_{P(A)P(X)}$ \mp 28.1 Hz.

Similarly, analysis of the ³¹P{¹H} NMR spectrum of [Pt(dppe) (¹BuCP)Cr(CO)₅] (2) afforded: $\delta_{P(A)}$ 46.1; $\delta_{P(M)}$ 53.1; $\delta_{P(X)}$ 99.0 ppm. ¹J_{PtP(A)} + 3299; ¹J_{PtP(M)} + 28.29; ¹J_{PtP(X)} + 395.6; ²J_{P(A)P(M)} ± 22.6; ²J_{P(A)P(X)} ± 177.5; ²J_{P(M)P(X)} ∓ 31.9 Hz.

The simulated spectra are shown in Fig. 1 and 3, respectively. The progressive change in the chemical shift $\delta_{P(X)}$ in the complexes in going from Cr to Mo to W ($\delta_{P(X)}$ 99.0 (Cr); 76.6 (Mo); 46.3 (W) ppm), is exactly that expected on the basis of extensive ³¹P NMR studies on tertiary phosphane complexes of Group VI metal carbonyls [15]. This strongly supports a structure of type (b), in which the [M(CO)₅] fragment is coordinated to ^tBuCP *via* the phosphorus lone pair.

3. Experimental details

3.1. Preparation of $[Pt(dppe) ({}^{t}BuCP)Cr(CO)_{5}]$ (2)

A two-fold excess of $[Cr(CO)_5THF]$ was prepared in THF solution (100 cm³) from $[Cr(CO)_6]$ (0.127 g, 0.577 mmol). [Pt(dppe) (¹BuCP)] (0.20 g, 0.288 mmol) was added, and the mixture was stirred for 2 h, during which the colour changed from orange to pale yellow. After removal of solvent, the resulting yellowish solid was washed several times with petroleum ether (60–80°C), to give the yellow microcrystalline complex [{1,2-bis-(diphenylphosphino)ethane-*P*,*P*}{2,2-dimethylpropylidynephosphine-*P'*,*C*}-platinum(0)]-*P*-pentacarbon-ylchromium(0) (0.234 g, 89%). Anal. Found: C, 48.3; H, 3.65. C₃₆H₃₃O₅P₃CrPt calc.: C, 48.28; H, 3.76%.

Complex 2 was also obtained when a solution of [Pt(dppe) ('BuCP)] (0.160 g, 0.231 mmol) in THF solution (15 cm³) was treated with an excess of [Cr(CO)₄NBD] (NBD = norbornadiene) (0.080 g, 0.312 mmol). The mixture was stirred for 12 h at room temperature, during which the colour changed from bright yellow to pale yellow. The solvent was pumped to dryness and the product (0.123 g, 60%) washed several times with petroleum ether (60–80°C).

3.2. Preparation of $[Pt(dppe) ({}^{t}BuCP)Mo(CO)_{5}]$ (3)

Similarly, a two-fold excess of $[Mo(CO)_6THF]$ prepared from $[Mo(CO)_6]$ (0.152 g, 0.577 mmol) in THF solution (100 cm³) was treated with $[Pt(dppe)(^1BuCp)]$ (0.20 g, 0.288 mmol) to afford the dark red crystalline complex $[\{1,2-bis(diphenylphosphino)ethane-P,P\}$ -{2,2-dimethylpropylidynephosphine-P',C} platinum(0)]-P'-pentacarbonyl-molybdenum(0) (0.255 g, 92.4%). Anal. Found: C, 46.3; H, 3.5. $C_{36}H_{33}O_5P_3MoPt$ calc.: C, 46.51; H, 3.58%.

Complex 3 (0.215 g, 89%) was also obtained from [Pt(dppe) (^tBuCP)] (0.180 g, 0.259 mmol) and an excess of [Mo(CO)₄NBD] (0.10 g, 0.333 mmol) in THF solution (20 cm³).

3.3. Preparation of $[Pt(dppe) ('BuCP)W(CO)_5]$ (4)

In an identical procedure to that described above, a two-fold excess of $[W(CO)_5THF]$, prepared from $[W(CO)_6]$ (0.263 g, 0.577 mmol) in THF solution (100 cm³), was treated with [Pt(dppe) ('BuCP)] (0.20 g, 0.288 mmol), to give the brownish microcrystalline complex {1,2-bis(diphenylphosphino)ethane-*P*,*P*}-{2,2-dimethylpropyldynephosphine-*P'*,*C*}-platinum(0)]-pentacarbonyltungsten(0) (0.270 g, 89.6%). Anal. Found: C, 42.0; H, 3.2. C₃₆H₃₃O₅P₃PtW calc.: C, 42.50; H, 3.27%.

Complex 4 (0.210 g, 71%) was also obtained by treating [Pt(dppe) (¹BuCP)] (0.20 g, 0.288 mmol) with an excess of [W(CO)₄NBD] (0.150 g, 0.385 mmol) in THF solution (15 cm³).

Acknowledgements

We thank the Saudi Arabian Government for financial support (for S.I. A1-R.) and Johnson Matthey for the loan of platinum metal salts.

References

- 1 M. Regitz and O.J. Scherer (eds.), *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, Georg Thieme Verlag, Stuttgart, 1990, pp. 58-111.
- 2 J.F. Nixon, Chem. Rev., 88 (1988) 1327.
- 3 M. Regitz and P. Binger, Angew. Chem., Int. Ed. Engl., 27 (1988) 1484.
- 4 J.C.T.R. Burckett-St. Laurent, P.B. Hitchcock, H.W. Kroto, M.F. Meidine and J.F. Nixon, J. Organomet. Chem., 238 (1981) C82.
- 5 P.B. Hitchcock, M.F. Meidine and J.F. Nixon, J. Organomet. Chem., 333 (1987) 337.
- 6 R. Bartsch, P.B. Hitchcock, M.F. Meidine and J.F. Nixon, J. Organomet. Chem., 266 (1984) C41.
- 7 R. Bartsch, J.F. Nixon and N. Sarjudeen, J. Organomet. Chem., 294 (1985) 267.
- 8 M.F. Meidine, C.J. Meir, S. Morton and J.F. Nixon, J. Organomet. Chem., 297 (1985) 255.
- 9 P. Binger, B. Biedenbach, A.T. Herrmann, F. Langhauser, P. Betz, R. Goddard and C. Kruger, *Chem. Ber.*, 123 (1990) 1617.

^{*} Carried out by Dr. D. Carmichael. A full paper, including signs of coupling constants in these and related diphosphene, phosphaalkene, and phospha-allene complexes, will be the subject of a future publication.

- 10 S.I. Al-Resayes, P.B. Hitchcock, D.M.P. Mingos and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1985) 365.
- 11 S.J. Al-Resayes, P.B. Hitchcock, M.F. Meidine and J.F. Nixon, J. Organomet. Chem., 341 (1988) 457.
- 12 C.S. Kraihanzel and F.A. Cotton, Inorg. Chem., 2 (1963) 533.
- 13 J. Chatt, P.B. Hitchcock, A Pidcock, C.P. Warrens and K.R. Dixon, J. Chem. Soc., Dalton Trans. (1984) 2237.
- 14 H. Lang, O. Orama and G. Huttner, J. Organomet. Chem., 291 (1985) 293.
- J.F. Nixon and A. Pidcock, Annu. Rev. NMR Spectrosc., 2 (1969) 345.